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Abstract. One of the more si=_aificant results from observa-

tional astronomy over the past few years has been the detection,

primarily via radial velocity studies, of low-mass companions

(LMCs) to solar-like stars. The commonly held interpretation

of these is that the majority are "extrasolar planets" whereas the

rest are brown dwarfs, the distinction made on the basis of ap-

parent discontinuity in the distribution of M sin i for LMCs as

revealed by a histogram. We report here results from statistical

analysis of Msini, as well as of the orbital elements data for

available LMCs, to test the assertion that the LMCs population

is heterogeneous. The outcome is mixed. Solely on the basis

of the distribution of M sin i a heterogeneous model is prefer-

able, although no unique best-fit mixture can be determined. On
the basis of the distribution of orbital periods and eccentricities

a homogeneous model is strongly preferable. Overall, we find
that a definitive statement asserting that LMCs population is het 2

erogeneous is, at present, unjustified. In addition we compare

statistics of LMCs with a compatible sample of stellar binaries.

We find a remarkable statistical similarity between these two

populations. This similarity coupled with marked populational

dissimilarity between LMCs and acknowledged planets moti-

vates us to suggest a common origin hypothesis for LMCs and

stellar binaries as an alternative to the prevailing interpretation.

We discuss merits of such a hypothesis and indicate a possible
scenario for the formation of LMCs.
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1. Introduction

The rising accuracy of radial velocity techniques has resulted
in detection of numerous unresolved low-mass companions to

solar type stars. So far (as of early 1999), surveys revealed 17

objects (Marcy et ai. 1999) for which a projected mass, M sin i,

of a companion is smaller than 12 Ms. The angle i is that be-
tween an observer's line-of-sight to a star and the normal to

the orbital plane of the companion/star system. Because of their

Send offprint requests to: T. Stepinski

small projected masses, and thus expected small actual masses

assuming random orientation of orbital planes in space, these

companions have been classified as extrasolar planets (EP) or

planet candidates (Marcy & Butler 1998; Marcy et al. 1999). In
addition, 10 objects with 17Ma < Msini < 70Mj have been

found (Mayor et al. 1997) and classified as brown dwarf candi-

dates (BD), again on the basis of their expected masses being

sub-stellar but substantially higher than the mass of Jupiter. Al-

though this dual classification of low-mass companions (LMCs)

is based solely on the magnitude of their projected masses, it

has been also widely assumed (see the aforementioned refer-

ences) that it reflects differences in origin. Specifically, it has

been assumed that EPs formed via the process essentially iden-

tical to what is postulated for the formation of Jupiter in the

Solar System - buildup by aggregation from a protoplanetary

disk, whereas BDs formed presumably via cloud fragmentation,

just like the stars. In this paper we address two distinct, yet in-
terconnected issues. First, the mass distribution of LMCs and

whether their division into EPs and BDs is statistically justified.
Second, the statistics of LMC's orbital elements and what they

may imply regarding the origin of LMCs.

We start by enumerating the principal arguments advanced
for dividing LMCs into EP and BD:

Mass distribution of LMCs. This argument as generally

presented stems from a histogram of M sin i from all available

LMC data (Marcy & Butler 1998; Mazeh et al. 1998; Marcy

et al. 1999). Such a histogram shows a spike in the first bin

containing LMC with the smallest masses followed by subse-

quent bins containing very few objects (see Fig. 2). Because

histograms are supposed to portray the underlaying probability

distribution function (PDF), the proponents of the dual character

of LMCs argue that the actual PDP of M sin i is discontinuous

at some small value of M sin i providing a natural divide and

observationally defining two sub-populations of LMC.

However, in cases where a number of objects in the sample

is relatively small and there is reason to believe that the underly-

ing PDF is skewed, histograms are poor indicators of an actual

PDE In this paper we infer the functional form of the PDF from

the empirical cumulative distribution function (CDF), and de-
termine the parameters of the PDF using maximum-likelihood

estimation (MLE).
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Minimum mass of brown dwarf. This argument stems

from the alleged lower limit to the mass of brown dwarfs based

upon the concept of opacity-limited fragmentation. Estimates

of this mass limit yield values of about 10 Mj (Rees 1976; Silk

1977), although lower estimates are possible if fragmentation

occurs in a disk (Boss 1998). Such a limit could provide theo-

retical support to the notion of duality of the LMC population,

provided it falts near the purported mass cutoff. However, this

limit must be considered as highly uncertain quantitatively .

Additionally, the "minimum mass" argument ignores the pos-

sibility that evolutionary effects such as mass exchange have

altered the masses of the closer companions. The strength of

this argument as support for a heterogeneous LMC population

is marginal at best.

Mass-eccentricity relation. This argument arises from

plotting LMC projected masses versus their eccentricities. Sup-

porters of the dual character of LMCs have pointed out that
LMC below a certain mass have low eccentricities, and those

above that mass have high eccentricities, again revealing a "dis-

continuity" that suggests the existence of two sub-populations

(Mayor et al. 1998). This argument seems to be a historical foot-

note as new data do not conform to the alleged mass-eccentricity
relation.

Metallicity. The fourth argument given for a dual charac-
ter of LMCs comes from the metallicities of stars with LMCs.

Stars with LMC designated as EP are metal rich compared to
field stars (Gonzalez 1998; Gonzalez et al. 1999). However, as

no direct comparison of metallicities between parent stars of
designated EP and parent stars of designated BD has been pub-

lished, the metallicity argument does not at present contribute

to the question of homogeneity or heterogeneity of the LMC

population.

The case for the existence of two distinct species in the

population of LMC is deserving of a more extensive treatment

than it has received in the literature to date. In this paper we
concentrate on evaluating two of the above arguments using

statistical analysis of data retating to all 27 LMC. Our goal is to

estimate from available data the underlying PDFs for projected

masses, periods, and eccentricities of LMC.

Our approach will be to employ a parametric statistical
model in which the data is assumed to be drawn from a mixture

of two PDFs (one describing putative EP and the second describ-

ing putative BD) each having a specific form (inferred from the

empirical CDF), but undetermined parameters. In addition, the

parameter describing the relative contribution of two compo-
nents to the overall mixture is undetermined. MLE is used to

determine all unknown parameters. This approach distinguishes
our work from that of Heacox (1999) who employed a nonpara-

metric statistical model to analyze distributions of various LMC

quantities.
Sect. 2 discusses data adjustments and Sect. 3 contains a de-

scription of our statistical analysis. In Sect. 4 we present re-

suits pertaining to projected masses. Separately, in Sect. 5 we

present results pertaining to periods and eccentricities. Finally,
in Sect. 6, we present conclusions and discussion.

2. Data adjustments

LMC data considered in this paper come from several differ-

ent surveys. This fact puts in question the representativeness

of the overall LMC sample and thus its suitability for statistical

analysis. To alleviate this problem some adjustments are needed

when joining LMC data from different surveys into a single set.

In the context of low-mass and stellar-mass companions such

adjustments are discussed by Mazeh et al. (1998). The correc-

tions take into account the effects due to instrumental precision

and number of stars examined in the various radial velocity sur-

veys. In addition, Mazeh et al. (1998) correct for the sin i factor

because they are ititerested in a distribution of an actual mass

of companions rather than a distribution of a projected mass.

We collect our LMCs sample from numerous surveys, but

it is only necessary to consider two distinct categories, objects

obtained from relatively low precision (_ 300 m/sec) survey

of 570 stars by Mayor et al. (1997) and objects obtained from

relatively high precision (-,, 10 raJsec) surveys of about 300

stars (see Marcy et al. 1999 and references therein).

A correction protocol described by Mazeh et al. (1998) is

valid assuming that low and high precision surveys are compat-

ible, statistically independent and unbiased. However, due to

differences in target selection criteria, different surveys are not

entirely compatible, and are likely not to be statistically indepen-

dent. Therefore, it is not clear what adjustment protocol, if any,
is the most appropriate. Given these uncertainties we use both

unadjusted and adjusted LMCs data to infer the distribution of
M sin i. We do not correct the data for the sin i factor because we

restrict ourselves to studying the distribution of projected mass

only. This is dictated by the small size of LMCs sample. Thus,
the names EP and BD have to be taken with caution inasmuch

as M sin i is used as a surrogate for an actual mass. Finally, only

unadjusted data is used to infer distributions of LMCs orbital

parameters.

3. Statistical model

We look for the underlying PDFs for projected masses, periods,
and eccentricities using the MLE. Such an estimation maxi-

mizes the probability of drawing a particular datum that was in

fact obtained. This approach requires specifying the functional

form of the PDF and estimating the values of free parameters.
The form of the PDF can be deduced from the empirical CDF

constructed for LMC quantities. Let _ = (Yl, Y2, ..., YN) be a

list of either projected masses, periods, or eccentricities for N

LMCs and assume that _ has been already sorted by size in

increasing order. Then the empirical CDF, denoted by F(y) is

defined by

0, Y < Yl
F(v) = '7, Yi _< Y < Yi+l (1)

1, yg_y

The estimation process is complicated by the fact that we

have to allow for the existence of two sub-populations in the

overall population of LMC. We assume that _ is drawn from a
mixture of two PDFs, fl (YI01) which describes the distribution
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ofquantityy for "planets," and f2(g102) which describes the

distribution of quantity y for "brown dwarfs," where 81 and 02

are lists of parameters characterizing respective PDFs. Thus, the

PDF for the entire LMC population can be expressed as follow,

f(ylaz, 02,c) -- (1 - s)fl(ylOz) + Ef2(y[02) (2)

where 0 < _ < 1 is a mixture parameter. Drawing (observing),

say projected masses M sin i from a total LMC population dis-

tributed according to (2) can be interpreted as a two step process•

First a Bernoulli random variable b is drawn taking a value of

1 with probability (1 - s), or value 2 with probability E. Ac-

cording to the value of b, M sin i is then drawn from one of

the two sub-populations with PDFs fl (y101) and f2 (y[02). We

assume that the "allocation" variable b is not directly observed.

This means that we don't a priori put any labels on the data. The

labels, if any, can be put a posteriori if indicated by statistical

analysis. The complete data is thus _, = (zl, z2, ..., zjv), where

zj = (yj, bj). The PDF given by (2) can be interpreted as 9 (zl0)

with 0 = (01,02, _). The log-likelihood function formed from
the data is

N N

log1:= log]-Ig(zjl0)= logg(z 10) (3)
j=l j=l

A MLE is a value of 0 denoted by 0 that maximizes log L.

In genera/, obtaining 0 is a nontdvial undertaking because 0

is a vector of potentially many dimensions and 9(z]O) can be

a complicated function. We use the Expectation-Maximization

(EM) numerical algorithm (Dempster et al. 1977) to find a MLE.
Note that this estimate contains the mixture parameter _. If the

estimation of e is close to zero, a homogeneous population is
indicated.

4. Projected masses

We carried out calculations for several cases set apart by differ-

ent adjustments to the LMC data, no adjustments, adjustment for

sample size, and adjustments for both sample size and precision.

Adjustments are achieved by enlarging the population of objects

in a certain projected mass range by an appropriate factor. To

correct for sample size we enlarged the population of EP by the

factor of 2. Following Mazeh et al. (1998) we correct fo r instru-
mental precision by further enlarging the population of planets

with A/sin/< 1Mj and BD with 10Mj < Msini < 30_Mj

by another factor of 2. It should be noted that Mazeh et al. use
a 2a (where a is a measurement error) criterion for establish-

ing the minimum detectable EP signal (4a peak-to-peak). This

is in contrast to the 4a semi-amplitude criterion suggested by

Marcy & Butler (1998) and used by us later in this paper. Use

of this more stringent detection criterion would yield a modest
increase in the correction factor for the low end of the EP data

set, but it would not alter the conclusion.

The first step is to calculate an empirical CDF for LMC pro-

jected masses• Displaying a CDF on the log-linear scale makes

an identification of the underlying PDF easier. In such a scal-

ing any straight line corresponds to a PDF having a power-law

form, f ,-., y-P, with the index p = 1. Convex departures from

the straight line indicate PDF in the form of the power-law with

p < 1, whereas concave departures from the straight line indi-

cate power-law PDF withp > 1. Similarly, PDFs in other forms

(for example, normal distribution, log-normal distribution etc.)

have their own characteristic CDF signatures. In the case when

the gradient of the empirical CDF changes abruptly, a mixture
of two PDFs is indicated.

The empirical CDF for projected masses of LMCs (regard-

less of considered adjustments) can be best characterized as

either a single smooth curve quite close to a straight line, or

a piecewise-smooth curve with two component curves. Thus,

we infer from the data that the PDF of projected masses has a

functional form that is either a single power-law, or a mixture

of two power-laws• Of course the empirical CDF constructed

from only 27 data points cannot be used to unambiguously in-

fer the underlying PDF and it is conceivable that the data came

from a distribution having functional form different from what

we have inferred. Newertheless, a power-law provides the least

structured candidate for the underlying PDE Therefore we adopt

the following form for the PDF of LMC projected masses

f(M sinilO ) = (1 - e)Ai(M sini)-m H1

+ cA2 (M sin i) -_2/-/2 (4)

where H1 and/-/2 are cut-offs defined in terms of the Heaviside

step function H,

Hx H[Msini . . mira • max= - (Msmz)e" ]H[(Msln_),p - Msini l

H2 H[Msini • • rain .max= -- (MsmZ)b d ]H[(Msin_)b d - Msini],

(5)

In other words, the PDF consists of two components, the EP

component which is a power-law with the index Pa and valid
• • rain • • max

for projected masses between (Msm_)_p and (Msmz)_p ,
and the BD component given by a power-law with the in-

. , l'nin

dex P2 and valid for projected masses between (Msm_)b d
• • max . . rnin

and (Msm_)b d . Values of (Msmz)_p = 03Mj and

(Msini)_a _ = 70Mj are set by observations, but there are

no a priori assumptions about values of (Msini)_ _ and

(M sin' rain.z)bd , the distributions may, in principle, overlap, con-
nect, or there may be a gap between them. The parameter

• .max (MsmZ)bd 'list 0 has five components, Pl, P2, (M sm z)e p , . ,mm

and e, because we decided to fix values of (M sin" minz)e p and

(M sin i)_. Constants A1 and A2 are to assure that contribut-
ing PDF s integrate to 1. They are expressible in terms of already

defined parameters.

Our goal is to determine the MLE of 0. We set up our calcula-

tions as follows• We allow both (M sin i)ep _× and (M sin i)bmdn
to be any value from 5Mj to 50Mj in steps of 2•5.M'j. Thus,

there are altogether 192 = 361 possible PDFs under considera-

tion. For each possible PDF with the pre-defined mass domain

we employ the EM algorithm which finds the MLE of Pl, P2,

and e and record the corresponding (maximized) value of log L.

Note that, in principle, the EM algorithm should be able to find

the MLE of the entire 0, without auxiliary cycling through two
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Fig. 1. The summary of testing the hypothesis that the PDF of M sin i for LMCs are given by a single power-law against the alternative hypothesis
• • rltl_.X • • mill

that it is given by a mixture of two power-laws. Possible mixture PDFs are indexed by (M sm t)e p and (M sm t)bd )' The single power-law
hypothesis is accepted over the mixture hypothesis for mixtures in the white region. The mixture hypothesis is accepted at the significance level
s < 1 for mixtures in the gray region. The black subset of the gray region contains mixtures accepted at s < 0.05. These, best fit models, can
be grouped into several types _ indicated by arrows. The panels from left to right are for the unadjusted LMC data, data adjusted for sample
size, and data adjusted for both sample size and instrumental precision.

of its components. However, due to the special character of

these parameters (they define cut-offs of PDFs) we find such

a"straightforward application of the EM algorithm difficult to

implement. We also calculate the MLE of 80 = p and record the

maximized value of log L for a PDF given by a single power-
law, f ,-_ (M sini) -p, over the entire domain of masses.

In the above context, the best way to address the main

issue of heterogeneity versus homogeneity of the LMC pop-

ulation is to test the hypothesis that the PDF of M sin i is

given by a single power-law against the alternative hypothe-

sis that it is given by a mixture of two power-laws• The test

is simple, we compare the value of (log L) sg for the MLE-

determined single power-law PDF with values of (log L)_ ix
for all k = 1,..., 361 MLE-determined mixture PDFs. A

mixture PDF hypothesis is a contender only for such mix-

tures (indexed by k) for which (log L)_ ix > (log L)'g. For
all contending mixtures we calculate a significance level, s =

1 - CDFx2[-2((I°gL) sg -- _fl°_'L'_mix'_]sJk ,q, using the X 2 distri-
bur.ion. The value of s is a probability that the single power-law

hypothesis is falsely rejected. The level at which one accepts

the heterogeneous hypothesis is, of course, subjective. Statistics

textbooks (for example Mack 1967) give following guidline; a

significance level of 0.05 is equated with "just significant" and

a level of 0.01 with "highly significant?'

Fig. 1 shows the results of the test. Each point on

the graph corresponds to a mixture PDF indexed by

[(Msm_)ep. . max, (Mslnz)bd. • min] instead of k. The white area cor-

respond to mixture PDFs for which (log L) mix < (log L) _g and

the gray area indicate contending mixtures. The subset of con-
tending mixtures for which s < 0•05 is colored black• Thus, the

black regions indicate mixture models that should be accepted

over the best homogeneous fit.

The first result is that, in all considered cases, our formal

procedure locates some mixture models that are better fits than

the best single power-law model. However, there is no unique
best-fit mixture, instead, in all cases, the best mixture fits can be

grouped into several types set apart by their overall character.

The best single power-law fit to the unadjusted LMC data

has an index p = 0.89 (+0.018). Three distinct mixture types

yielding significantly better fit than the single power-law model
can be identified. Type I is a mixture with a power-law break

at M sin i about 5-10Mj. The PDF for small projected masses

(before the break) is steeper than after the break. Type I fits sug-

gest a heterogeneous LMCs population with a character much

like the one usually implied in the Literature (for example Marcy

et al. 1999). In a Type II mixture the power-law index is close

to 1.0 over the entire range of LMCs projected masses but the
EP PDF ends at M sin i _ 22Mj and the BD PDF starts at

M sin i ,_ 35Mj. Type II fits would be consistent with the

findings of Mazeh et al. (1998). Finally, in the Type ]II fit the

power-law index is also close to 1.0 over the entire range of pro-
jected masses, but the high end of the EP PDF overlaps with the

low end of the BD PDF in the region of M sin i _ 35 - 40Mj.
The formally best fit to the unadjusted LMC data is of Type

II with s = 0.008• Fig. 2 shows best fits for a single power-law

model and for all types of preferred mixtures. CDFs are the best

tools to visualize a fitness of a model to the data. We have, how-

ever, also constructed histograms based on corresponding mod-

els. Such histograms are constructed by integrating the model

PDF between the cutpoints defining the bins and rounding re-

suits to the nearest integer. Comparison between data-derived

and model-derived histograms offer an alternative way to visu-

ally judge the fitness of a model.

The best single power-law to the sample size adjusted LMC

data has an index p = 1.06 (+0.014). As was the case with the
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unadjusted LMC data, Type I and 1I mixture fits are statistically

superior to a homogeneous fit, but Type 1]I fits are not. A new

type of heterogeneous fit, Type IV, is present. Type IVs are

similar to the Type I fits, but with the power-law break located

at Msini = 12 - 15Mj. The formally best fit to the sample

size adjusted LMC data is of Type I with s = 0.004.

Finally, the best single power-law to the sample size and

precision adjusted LMC data has an index io = 1.15 (4-0.007).

In such case only Type I and II mixture are better than the

single power-law. The formally best fit to the size and instrument

precision adjusted LMC data is of Type I with s = 0.02.

Overall, our calculations show that heterogeneous models

can be found that fit the LMC data better than a homogeneous

model. However, given presently available data we cannot pin-

point an unique mixture model. Two mixture types seem to

offer comparable fits. One (Type I) suggests the LMCs popula-

tion divided roughly at the theoretical lower limit to the mass of

brown dwarfs based upon the concept of opacity-limited frag-

mentation. A second (Type II) suggests possible discontinuity at

M sin i of about 20-35Mj. This result is robust inasmuch as it is

independent of possible data adjustments. Evidently more ob-

servations are needed to settle this issue. Note that single power-

law models offer reasonable, although formally worse, fits. Fits

to the adjusted LMC data sets yield steeper single power-law

models, although, the range from p = 0.89 (±0.018), for un-

adjusted data, to p = 1.15 (0.007), for the most adjusted data,

is not dramatic.

Clear resolution of the nature of the projected mass dis-

tribution awaits the results from a comprehensive survey of a

large number (-,_ I000) stars using one instrument. Such a survey

is just beginning in the Southern Hemisphere (Queloz, private

communication).

5. Periods and eccentricities

Studying the projected mass distribution of LMCs is the way

(apart from the sin i difficulty) of addressing the issue of their

character that has been emphasized by other workers. However,

examining distributions of the orbital periods and eccentricities

of the LMCs may provide a clearer sense of the nature of these

objects as these observables have no ambiguities associated with

their value. Additionally, they are relatively, but not completely

immune to the question of completeness as the entire range of

values that these variables can take is accessible to all surveys.

The exception to this lies in the longer periods, but that is not

likely to influence the results that are discussed below. Toward



908 T.F. Stepinski & D.C. Black: Statistics of low-mass companions

0,8

0.6
kL
a
o

0.4

0.2

0.80,6

o _

OOf O0'4

0.2

,,f , 0

5 10 50 100 500 1000

.j
/

0.001 O.OOS 0.01 O.OS 0.1 O.S 1

P/days eccentncity

Fig. 3. Empirical CDFs of periods (left) and eccentricities (right) for LMC (denoted by dots) and seLected stellar companions (denoted by
pentagon symbols). Black dots indicate contributions from designated extrasolar planets and gray dots indicate contributions from designated
brown dwarfs. Curves are model CDFs calculated from MLE-determined single power-laws PDFs. Because of log-linear scale objects with
e = 0 are pLotted as e = 0.001.

that end we have constructed empirical CDFs for periods and
eccentricities of LMC.

Note that the character of the problem for periods and ec-

centricities is qualitatively different from that for the projected
masses. In the case of the projected mass distribution, one could

imagine a mixture PDF with components PDFs having mostly

separated domains, with some possible overlap. However, in the

case of periods and eccentricities, if actual PDFs are mixtures,

their components overlap over the entire domain. Nevertheless,

the EM algorithm can still be used to test homogeneity versus
heterogeneity of the sample.

We use the same technique as described in Sect. 4 to test

the homogeneity versus the heterogeneity of the population

of LMCs with respect to distributions of their orbital periods

and eccentricities. The empirical CDF for the orbital periods of

LMCs, plotted on the log-linear scale can be best characterized

as either a single straight line or a piecewise-smooth curve with
two components. Thus we infer from tha data (see also Sect. 4)

that the functional form of the PDF of LMC periods is a binary

mixture (2) with fl and f2 given by power-laws with different in-

dices, but having the same domain consisting of the entire range

of observed periods. We calculate the MLE of 0 = (Pz,P2, _)-
Calculations reveal that the log-likelihood function (3) is mini-

mized for e = 0 and p = Pl = 0.98 (4-0.01). Therefore, there

is no evidence of two populations in the LMC in the available

period data. Fig. 3 (the left panel) shows the empirical CDF for

the orbital periods of all LMCs companions together with the
MLE-estimated fit.

Also shown in Fig. 3 is the empirical CDF for orbital pe-

riods of selected stellar companions to solar-type stars. The

particular selection of 15 binaries, due to Heacox (1999), is

designed to be compatible with LMCs. It is a subset of the bina-

ries in the Duquermoy & Mayor (1991) survey constrained by

the requirement that primaries are population I and semi-major

axes are less than 3 AU. Note that the empirical CDF for peri-

ods for stellar companions seems to be indistinguishable from

that defined by the LMC. Formally, the MLE-estimated single

power-law PDF for periods using the Heacox binaries data has

p = 0.89 (4-0.05). We have also constructed the empirical CDF

for orbital periods of secondaries using all 52 spectroscopic bi-
naries from the survey by Duquermoy & Mayor (1991). Again,

the shape of the empirical CDF suggest a single power-law, and

the MLE-estimated power-law index is 19= 0.87 (4-0.004).

The empirical CDF for eccentricities of LMCs, plotted on
the log-linear scale can be best characterized as either a sin-

gle convex curve or a piecewise-smooth curve with two com-

ponents. Thus, we infer from the data (see also Sect. 4) that
the functional form of the PDF of LMC eccentricities is a bi-

nary mixture of two power-laws with different indices and a

common domain. The log-likelihood function is minimized for

e = 0. Therefore, as in the case of periods distribution, there
is no evidence of two populations in the LMC in the avail-

able eccentricity data. The MLE-estimated single power-law
PDF for eccentricities using all LMCs with e > 0.001 has

p = 0.64 (-/-0.03). Fig. 3 (the right panel) shows the empir-

ical CDF for eccentricities of all LMCs companions together

with the best power-law fit. Also shown in Fig. 3 is the CDF

for eccentricities of secondaries in the aforementioned sample

of stellar binaries. As in the case of orbital periods, the empir-

ical CDFs for eccentricities for stellar companions and LMCs

are very sim!lar. Formally, the MLE-estimated single power-law

PDF for eccentricities using the Heacox binaries with e > 0.001

has p = 0.63 (4-0.08). We have also constructed the empirical

CDF for eccentricities of secondaries using all 52 spectroscopic

binaries from the survey by Duquennoy & Mayor (1991). Sin-

gle power-law is indicated, and the MLE-estimated power-law

index is p = 0.63 (4-0.04) identical to that obtained for the
Heacox subset. It appears that LMCs and stellar binaries have

orbital elements distributed alike. We shell return to this key
facet of the LMCs in the discussion section.

So far we have considered individual distributions of pro-
jected masses and orbital elements of LMC and stellar com-

panions. However, we can also study dual correlations between

these quantities. The clearest cotTelation is that between peri-
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Fig. 4. P-e (upper panel) and M sin i-
e (lower panel) diagrams. Square sym-
bols denote EP, triangle symbols denote
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lar companions. Because of logarithmic
scale objects with e = 0 are plotted as
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are labeled by their projected mass (in
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panel are labeled by their periods (.given
in days). The solid line on the P - e
diagram represents the least square fit
using all data points except those with
e = 0.001. Dashed curves denote se-

lected detectability limits.

ods and eccentricities. Black (1997) has previously noted this.

Fig. 4 (upper panel) shows the P - e diagram composed of all

LMCs and selected stellar companions. The insert lists correla-
tion coefficients for various sub-groups of the data. The Spear-

man coefficient, ps, measures the correlation between ranldngs

of periods and eccentricities, it gauges the strength of the as-
sociations between two variables. Perfect concordance of both

rankings yields Pe = 1 and indicates a direct causal relation be-

tween both quantities. Smaller values of Ps indicate an existence
of a trend rather than a one-to-one relation, p, = 0 indicates no

association. The fact that Ps :/: 0 for all entries in the insert is

statistically significant at the s = 0.05 level, except for the BD

population, for which it is significant, but only at the s = 0.25
level. This has been determined using the fact that the quantity

ps_/(n - 1)/(1 - psi) has a Student t-distribution with n - 2

degrees of freedom. These correlations have been calculated

from the data set excluding objects in orbits suspected of being

altered by stellar tides, i.e., those with orbital periods of a few

days. The least square fit to this data is shown in Fig. 4 (upper

panel). Fitting to LMC data alone, or separately to EP or BD

data yields similar results.

The existence of the P - e relation could, in principle, stem

solely from the detectability limit. The expression for the semi-

amplitude, K, of the stellar radial velocity, induced by a com-

panion orbiting a star with mass M,, can be writ/en in the fol-

lowing form,

_'(K, M sin i, P, e) =

(__G_) z13 Msini 1K - (M. 4- M) _/3 (1 - eZ) z/_ = 0 (6)

According to Marcy & Butler (1998). a confident detection re-

quires that the semiamplitude be ,--, 4 times the Doppler error.

or Kin in _--40 m s-z. Thus. a companion with a given projected

mass (M sin i)o can only be detected if its (Po. eo) is located
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above the curve _'(Kmi,, (M sin i)o, P, e) = 0, on the P - e

diagram. Three examples of such curves are plotted on our P- e
diagram. We applied this criterion to all LMC and have found

that the only object with a location on the P - e diagram neat"

its detectability limit is HD 210277 with M sin i = 1.36Mj,
P = 437 days, and e = 0.45. Thus, the existence of the 19 _ e

relation is not an artifact of the detectability limit; the observed

LMC (with the possible exception of HD 210277) could, in
principle, have lower eccentricities and still be detectable. The

general absence of LMCs with low eccentricities for periods in

excess of a few tens of days is remarkable.

Fig. 4 (lower panel) is the often discussed M sin i - e di-
agram. The insert lists correlation coefficients for various sub-

groups of the data with e > 0.001. The entries in brackets

give correlation coefficients for the data excluding additional

objects in orbits suspected of being altered by stellar tides and
thus having eccentricities lower than the nominal values. Ex-

cluded objects are v Andromedae (P = 4.621 days), 51 Pegasi

(P = 4.2308 days), and HD 283750 (P = 1.79 days). The

statistical significance of Pa _ 0 is s = 0.02(0.17) for EP,

s = 0.84(0.62) for BD, and s = 0.05 for stellar companions.

To be detectable, the location, ((M sin i)o, co), of a companion
with the period Po on the M sin i - e diagram must be above

the curve _'(Kmin, M sin i, Po, e) = 0. Three examples of such

curves are plotted on our M sin i - e diagram. Only liD 210277

is at the limit of detectability, and thus the M sin i - e diagram

is not altered by the detectability limit.
The association between M sin i and e in the LMC and stel-

lar companions populations is weak to non-existent. Most likely,
these quantities are uncorrelated. Contrary to earlier claims

(Mayor et al. 1998) the LMC population cannot be divided into

two sub-populations on the basis of orbital eccentricity.

Overall, our calculations suggest that the LMC population is

homogeneous with respect to statistics of orbital elements. EPs

and BDs share a common PDF for orbital periods and eccentric-

ities, they also share a common period-eccentricity correlation,

as weU as the same lack of significant mass-eccentricity corre-

lation. Furthermore, the entire LMC population displays orbital

elements statistics very similar to that of compatible stellar com-
panions.

6. Discussion and conclusions

We have conducted a statistical analysis of LMC projected
masses and orbital elements in an effort to assess whether the

existing data provide unambiguous evidence for the presence

of two populations of objects in the LMCs. Two of the four ar-

guments presented to assert that there are two populations are

beyond the scope of this paper, but the two central arguments

involving the mass distribution of LMCs and a possible corre-
lation between the mass and orbital eccentricities of the LMCs

have been tested. Our findings are as follows:

(1) With respect to the projected mass distribution of LMCs, we

have found indeed that there exist heterogeneous models that

offer statistically significant better fits to the available data than

a homogeneous model. In other words, there is an indication of

a break in the projected mass distribution of LMCs. However,
we also have found that there are at least two families of such

heterogeneous models, set apart by the location of the power-

law break and values of power-law indices that offer comparable

fits to the data. One such family of models is compatible with
the usual concept of EP and BD, but the other is not. Moreover,

the scarcity of data makes it likely that the superiority of one

or both types of heterogeneous models is due to a particular
sample realization, and not necessat-ily indicative of the actual

mass distribution. The best fit to a single power-law model has
p_l.

(2) Adjusting data for sample size and instrumental precision
does not alter qualitatively the overall result. It does result in

slightly steeper power-law in the case of a homegeneous model.

(3) All LMCs have the same orbital eccentricity and orbital

period distribution functions. A homogeneous model is strongly
suggested.

(4) The only clear con'elation among LMC observables is be-

tween eccentricity and period. One cannot divide LMC into two

sub-populations on the basis of orbital eccentricity as previously
claimed.

(5) There is a striking populational similarity between LMCs

and compatible stellar secondaries. The underlying eccentricity
and period distribution functions, as well as correlations, for

LMCs are indistinguishable from those constructed for stellar

secondaries in the Heacox (1999) sample. Moreover, the distri-

bution of projected masses of these secondaries is best approx-
imated by a single power-law with an index of p ,_ 1, a value

about the same as that obtained while fitting a single power-
law to the LMCs data. It cannot be overstressed that this does

not require that LMCs and stellar secondaries share the same,

monotonically decreasing, ,-_ M-1, mass function, only that the

pieces of the mass function in the domains of stellar secondaries
and LMCs have the same functional form.

These results, taken all together put in question the preva-

lent assertion that the present data demonstrate existence of EP

and BD as separate populations. In general, our findings are in

agreement with those of Heacox (1999) who performed a sim-

ilar analysis using a different statistical method. Use of empiri-

cal CDFs distinguish ours and Heacox's analysis from previous

assessments which relied on histograms, a very subjective tech-

nique especially in the case of a small sample. However, it is

also important to recall that our (as well as all previous) statis-

tical analysis cannot be consider definitive because of possible

bias of available LMC sample despite adjustments (see Sect. 2).

Apart from the possible existence of a break in the projected

mass distribution of LMCs, all other evidence suggests a homo-

geneous population, possibly somehow related to the population
of stellar companions. Populational similarity between LMCs

and stellar secondaries is in striking contrast to marked dissimi-

larity between statistics of LMCs and those of secondary objects

believed to have formed via accretion in a circumprimary disk.

Such objects are the planets in our own planetary system, the
regular satellites of the planets Jupiter, Saturn, and Uranus, and

possibly the companions to the pulsar PSR 1257+12 (Wolszczan
& Frail 1992).
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Our findings invite questions about the origin of LMCs. The

surprising populational similarity in orbital elements between

EP and BD on the one hand, and the entire LMCs population

and binaries on the other hand, implies a common cause or
causes. The observed distributions can be functions of evolu-

tion (see discussion in Heacox 1998 and Heacox 1999), forma-
tion mechanism, or a combination of formation and evolution

(Black 1997). Common formation mechanisms for all LMCs

and some stellar secondaries is certainly a viable hypothesis,

even if further observations strengthen the evidence for a break

in the mass distribution, as long as the distributions of orbital
elements noted here remains.

Note that the break in the mass distribution (if real) is, by
itself, insufficient evidence for asserting a dual origin for LMCs.

For example, it is thought that all planets in the solar system

have a common accretionally based origin, and yet constructing
a histogram of planetary masses would reveal a division into

terrestrial and giant planets.

Given the present observations, a common origin hypothe-
sis has no less merit than the prevalent hypothesis according to

which EP formed in a process fundamentally different (i.e., as

do planets) from BD and stellar companions. The term "com-

mon origin" is here taken to imply a similar, but not necessary

identical, set of processes. We discuss one possible example
later in this section.

In addition to being supported by the available orbital ele-

ments observations, the common origin hypothesis also has the

virtue of simplicity. If we look at the LMC population from this
perspective its allegedly "peculiar" properties suddenly look

very ordinary. The location of Jupiter-size objects at very close
distances from stars and moving in elliptical orbits are "natural"

in a population related to stellar companions. Perhaps, the pe-
culiarity of the objects popularly known as "extrasolar planets"

is only due to misconception about their origin.

This simplicity is in contrast to what is required in the frame-

work of the EP hypothesis. Orbital migration mechanisms have
to be invoked to account for location of EP, but as such mech-

anisms would sweep a planet into the star, the addition of stop-

ping processes is necessary. In addition many different mecha-
nisms have been proposed to generate the observed eccentric-

ities. (References to some of the work on the aforementioned

mechanisms can be founded in Marcy et al. 1999). Although in-
dividually each of these mechanisms is theoretically viable, as

a set, they have to be viewed as an adroitly chosen construct to

support the standard planet hypothesis. Also, it is not clear how

to account for giant planets in the Solar System in the frame-

work of such a schemata! On the other hand, in the common

origin hypothesis there is only a single outstanding problem of

how to form Jupiter-mass analogs to stellar companions.

Interestingly, an idea, rooted in the planetary origin, but

formally belonging to the category of the common origin hy-

pothesis, has been proposed by Artymowicz et al. (1998). They

discussed a possibility that all LMC began as planets. Their nu-

merical calculations suggest that a growing protoplanet, while

causing a gap in a disk, can continue to accumulate mass and

grow to perhaps a brown dwarf-size object - a superplanet. To

support their scenario, Artymowicz et al. (I998) pointed out

that disk-planet interactions would naturally lead to superplan-

ets having large eccentricities and regular planets having small
eccentricities as in M sin i - e relation based on circa 97 data.

However, as noted above, the current data do not support such
division. Moreover, it is not clear how this scenario can account

for the P - e relation discussed here and in Black (1997). In

addition, it is difficult to see how the LMC population formed

that way can acquire statistical properties virtually identical to

those of stellar companions unless we are willing to extend su-

perplanets all the way to stellar masses.

The theoretical challenge is to come up with a feasible sce-

nario for the common origin hypothesis. Here we offer some pre-

liminary thought on one such scenario. Adams & Benz (1992)

considered the possibility of forming binary companions by

means of gravitational instabilities in circumstellar disks. Their

scenario works as follows. At some early stage the disk mass

is comparable to the stellar mass, which at that stage is much

smaller than its final mass. Under such conditions, gravitational

instabilities occur leading to the formation of a Jupiter-mass

companion around a small star. Subsequent infall augment both

the star and its companion to produce a typical binary system.

According to Adams & Benz, this mechanism can, in principle,

form binaries with separations anywhere in the range from the

stellar radius to 100 AU. The character of such binaries depends

on initial condition, timing, and a manner in which subsequent
infall material is shared between the star and its companion.

Perhaps, under most conditions, stellar binaries form, but under

certain, less likely conditions or differing circumstances, LMCs

form. At present, this scenario is only a suggestion that has to

be considered more closely.

The possibility that the origin of some or all of the low-

mass component of the LMCs is not a standard planet formation

mechanism brings the issue of what the name "planet" signifies.

We suggest that a definition of the term "planet" should center
on how they are formed. Thus, if the further studies confirm

that LMC form via a process fundamentally different from what

is currently accepted, perhaps we should rethink calling them

extrasolar planets.

In summary, in addition to presenting the results of our sta-

tistical analysis, the major goal of this paper is to raise the

awareness of the fact that, although intellectually fascinating,

the standard planetary hypothesis is not the only possible hy-

pothesis for the origin of the LMCs. Based on statistics ofLMCs,

the common origin hypothesis is a viable alternative to the EP

hypothesis. Because such a hypothesis was not presented be-

fore, its theoretical underpinning are not yet well developed,

but this should change, especially if new observations continue

to support our statistical findings.
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